Real-Time EEG-Based Detection of Fatigue Driving Danger for Accident Prediction
نویسندگان
چکیده
This paper proposes a real-time electroencephalogram (EEG)-based detection method of the potential danger during fatigue driving. To determine driver fatigue in real time, wavelet entropy with a sliding window and pulse coupled neural network (PCNN) were used to process the EEG signals in the visual area (the main information input route). To detect the fatigue danger, the neural mechanism of driver fatigue was analyzed. The functional brain networks were employed to track the fatigue impact on processing capacity of brain. The results show the overall functional connectivity of the subjects is weakened after long time driving tasks. The regularity is summarized as the fatigue convergence phenomenon. Based on the fatigue convergence phenomenon, we combined both the input and global synchronizations of brain together to calculate the residual amount of the information processing capacity of brain to obtain the dangerous points in real time. Finally, the danger detection system of the driver fatigue based on the neural mechanism was validated using accident EEG. The time distributions of the output danger points of the system have a good agreement with those of the real accident points.
منابع مشابه
P25: Driver Cognitive Fatigue Detection Based on Changes in EEG Frequency Bands in Non-Professional Drivers during a Simulated Driving Task
لطفاً به چکیده انگلیسی مراجعه شود.
متن کاملبررسی تغییرات ریتم آلفا به منظور ردیابی خستگی ذهنی راننده در روی شبیه ساز رانندگی
Introduction: Driver fatigue is one of the major causes of accidents in roads. It is suggested that driver fatigue and drowsiness accounted for more than 30% of road accidents. Therefore, it is important to use features for real-time detection of driver mental fatigue to minimize transportation fatalities. The purpose of this study was to explore the EEG alpha power variations in sleep dep...
متن کاملEEG alpha spindle measures as indicators of driver fatigue under real traffic conditions.
OBJECTIVE The purpose of this study is to show the effectiveness of EEG alpha spindles, defined by short narrowband bursts in the alpha band, as an objective measure for assessing driver fatigue under real driving conditions. METHODS An algorithm for the identification of alpha spindles is described. The performance of the algorithm is tested based on simulated data. The method is applied to ...
متن کاملطراحی و ساخت یک سیستم تشخیص خواب آلودگی راننده مبتنی بر پردازشگر سیگنال TMS320C5509A
Every year, many people lose their lives in road traffic accidents while driving vehicles throughout the world. Providing secure driving conditions highly reduces road traffic accidents and their associated death rates. Fatigue and drowsiness are two major causes of death in these accidents; therefore, early detection of driver drowsiness can greatly reduce such accidents. Results of NTSB inves...
متن کاملAutomatic Classification of Driving Mental Fatigue with Eeg by Wavelet Packet Energy and Kpca-svm
Driving mental fatigue is a main cause of some serious transportation accident and it has drawn increasing attention in recent years. In this study, an automatic measurement of driving mental fatigue based on the Electroencephalographic (EEG) is presented. Fifteen healthy subjects who performed continuous simulated driving task for 90 minutes with EEG monitoring are included in this study. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of neural systems
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2015